References [31 ]
Flynn KJ, Davidson K & Cunningham A (1993) Relations between carbon and nitrogen during growth of Nannochloropsis oculata (Droop) Hibberd under continuous illumination. New Phytologist 125: 717-722.
Flynn KJ, Davidson K & Leftley JW (1993) Carbon-nitrogen relations during batch growth of Nannochloropsis oculata (Eustigmatophyceae) under alternating light and dark. Journal of Applied Phycology 5(4): 465-475.
Day JG, Benson EE & Fleck RA (1999) In Vitro Culture and Conservation Of Microalgae: Applications For Environmental Research, Aquaculture & Biotechnology. In Vitro Cellular & Developmental Biology - Plant 35: 127-136.
Hibberd DJ & Norris RE (1984) Cytology and ultrastructure of Chlorarachnion reptans (Chlorarachniophyta divisio nova, Chlorarachniophyceae classis nova). Journal of Phycology 20(2): 310-330.
Ehara M, Kitayama T, Watanabe KI, Inagaki Y, Hayashi-Ishimaru Y & Ohama T (1999) Comprehensive molecular phylogenetic analysis of a heterokont alga (NIES 548) using genes from all three cellular compartments. Phycological Research 47: 225-231.
Clark DR, Merrett MJ & Flynn KJ (1999) Utilization of dissolved inorganic carbon (DIC) and the response of the marine flagellate Isochrysis galbana to carbon or nitrogen stress. New Phytologist 144: 463-470.
DOI: none
Andersen RA, Brett RW, Potter D & Sexton JP (1998) Phylogeny of the Eustigmatophyceae based upon 18S rDNA, with emphasis on Nannochloropsis. Protist 149: 61-74.
Natrah FMI, Kenmegne MM, Wiyoto W, Sorgeloos P, Bossier P & Defoirdt T (2011) Effects of micro-algae commonly used in aquaculture on acyl-homoserine lactone quorum sensing. Aquaculture 317: 53-57.
Chen Y & Vaidynanthan S (2012) A simple, reproducible and sensitive spectrophotometric method to estimate microalgal lipids. Analytica Chimica Acta 724: 67-72.
Day JG, Thomas NJ, Achilles-Day UEM & Leakey RJG (2012) Early detection of protozoan grazers in algal biofuel cultures. Bioresource Technology 114: 715-719.
Slocombe SP, Ross M, Thomas N, McNeill S & Stanley M (2013) A rapid and general method for measurement of protein in micro-algal biomass. Bioresource Technology 129: 51-57.
Roleda MY, Slocombe SP, Leakey RJG, Day JG, Bell EM & Stanley MS (2013) Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresource Technology 129: 439-449.
Durmaz Y (2007) Vitamin E (a-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture 272: 717-722.
Ehara M, Watanabe KI, Kawai H, Inagaki Y, Hayashi-Ishimaru Y & Ohama T (1998) Distribution of the mitochondrial deviant genetic code AUA for methionine in heterokont algae. Journal of Phycology 34: 1005-1008.
DOI: none
Droop MR (1955) Some new supra-littoral protista. Journal of the Marine Biological Association of the UK 34: 233-245.
DOI: none
Li F, Gao D & Hu H (2014) High-efficiency nuclear transformation of the oleaginous marine Nannochloropsis species using PCR product. Bioscience, Biotechnology, and Biochemistry 78: 812-817.
Suda S, Atsumi M & Miyashita H (2002) Taxonomic characterization of a marine Nannochloropsis species, N. oceanica sp. nov. (Eustigmatophyceae). Phycologia 41: 273-279.
Beacham TA, Bradley C, White DA, Bond P & Ali ST (2014) Lipid productivity and cell wall ultrastructure of six strains of Nannochloropsis: Implications for biofuel production and downstream processing. Algal Research 6: 64-69.
Wong DM, Nguyen TTN & Franz AK (2014) Ethylenediaminetetraacetic acid (EDTA) enhances intracellular lipid staining with Nile red in microalgae Tetraselmis suecica. Algal Research 5: 158-163.
Day JG, Burt DJ, Achilles-Day UEM & Stanley MS (2013) Future algal biofuels: Implications of environmental temperature on production strain selection. International Journal of Ambient Energy 36: 248-252.
Polishchuk A, Valev D, Tarvainen M, Mishra S, Kinnunen V, Antal T, Yang B, Rintala J & Tyystjärvi E (2015) Cultivation of Nannochloropsis for eicosapentaenoic acid production in wastewaters of pulp and paper industry. Bioresource Technology 193: 469-476.
Slocombe SP, Zhang QY, Ross M, Anderson A, Thomas NJ, Lapresa A, Rad Menéndez C, Campbell CN, Black KD, Stanley MS & Day JG (2015) Unlocking nature's treasure-chest: Screening for oleaginous algae. Scientific Reports 5: 09844.
Barbano D, Diaz R, Zhang L, Sandrin T, Gerken H & Dempster T (2015) Rapid characterization of microalgae and microalgae mixtures using Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) PLoS ONE 10(8): e0135337.
Pond DW, Leakey RJG & Fallick AE (2006) Monitoring microbial predator-prey interactions: an experimental study using fatty acid biomarker and compound-specific stable isotope techniques. Journal of Plankton Research 28: 419-427.
Hou Y, Liu Z, Zhao Y, Chen S, Zheng Y & Chen F (2016) CAH1 and CAH2 as key enzymes required for high bicarbonate tolerance of a novel microalga Dunaliella salina HTBS. Enzyme and Microbial Technology 87-88: 17-23.
McKennedy J, Onenc S, Pala M & Maguire J (2016) Supercritical carbon dioxide treatment of the microalgae Nannochloropsis oculata for the production of fatty acid methyl esters. The Journal of Supercritical Fluids 116: 264-270.
Taleb A, Kandilian R, Touchard R, Montalescot V, Rinaldi T, Taha S, Takache H, Marchal L, Legrand J & Pruvost J (2016) Screening of freshwater and seawater microalgal strains in fully controlled photobioreactors for biodiesel production. Bioresource Technology 218: 480-490.
Fawley MW, Jameson I & Fawley KP (2015) The phylogeny of the genus Nannochloropsis (Monodopsidaceae, Eustigmatophyceae), with descriptions of N. australis sp. nov. and Microchloropsis gen. nov.. Phycologia 54: 545-552.
Hughes AH, Magot F, Tawfike A, Rad-Menéndez C, Thomas N, Young LC, Stucchi L, Carettoni D, Stanley MS, Edrada-Ebel R & Duncan KR (2021) Exploring the chemical space of macro- and micro- algae using comparative metabolomics Microorganisms 9: 311.
McLeod AR, Brand T, Campbell CN, Davidson K & Hatton A (2021) Ultraviolet radiation drives emission of climate-relevant gases from marine phytoplankton. Journal of Geophysical Research: Biogeosciences 126: 9.
Hughes AH, Magot F, Tawfike AF, Rad Menéndez C, Thomas N, Young LC, Stucchi L, Carettoni D, Stanley MS, Edrada-EBel R & Duncan KR (2021) Exploring the chemical space of macro- and micro-algae using comparative metabolomics. Microorganisms 9: 311.
Sequences [4 ]
EMBL/Genbank Links
(Bold text = submission by CCAP staff or collaborators)
18S
Division/Phylum: Heterokontophyta/Ochrophyta Class: Eustigmatophyceae Order: Eustigmatales

Note: for strains where we have DNA barcodes we can be reasonably confident of identity, however for those not yet sequenced we rely on morphology and the original identification, usually made by the depositor. Although CCAP makes every effort to ensure the correct taxonomic identity of strains, we cannot guarantee that a strain is correctly identified at the species, genus or class levels. On this basis users are responsible for confirming the identity of the strain(s) they receive from us on arrival before starting experiments.
For strain taxonomy we generally use AlgaeBase for algae and Adl et al. (2019) for protists.

Culture media, purity and growth conditions:
Medium:f/2; Axenic; maintained by serial subculture;or SNA
Attributes
Authority(Droop) Hibberd 1981
IsolatorDroop (1953)
Collection Site Skate Point, Isle of Cumbrae, Scotland, UK
Area Europe
Country UK
Environment Marine
In Scope of Nagoya Protocol No
ABS Note Collected pre Nagoya Protocol. No known Nagoya Protocol restrictions for this strain.
Collection Date c 1953
Original Designation Millport 66
Pathogen Not pathogenic: Hazard Class 1
Special Uses used in aquaculture
Strain Maintenance Sheet SM_AquacultureStrains.pdf
Toxin Producer Not Toxic / No Data
Type Culture Yes
Taxonomy WoRMS ID 376148
Equivalent StrainsCCMP525,CSIRO CS-189,NEPCC 631,UTEX 2164
Other DesignationsSMBA 66

CCAP849/1

Nannochloropsis oculata


Related Products