References [21 ]
Pröschold T, Harris EH & Coleman AW (2005) Portrait of a species: Chlamydomonas reinhardtii Genetics 170: 1601-1610.
Hellio C, Veron B & Le Gal Y (2004) Amino acid utilization by Chlamydomonas reinhardtii: Specific study of histidine. Plant Physiology and Biochemistry 42(3): 257-264.
Dean AP, Nicholson JM & Sigee DC (2008) Impact of phosphorus quota and growth phase on carbon allocation in Chlamydomonas reinhardtii: An FTIR microspectroscopy study. European Journal of Phycology 43(4): 345-354.
Cullimore JV & Sims AP (1980) An association between photorespiration and protein catabolism: Studies with Chlamydomonas. Planta 150: 392-396.
Dean AP, Sigee DC, Estrada B & Pittman JK (2010) Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource Technology 101: 4499-4507.
Carslake D, Townley S & Hodgson DJ (2009) Predicting the impact of stage-specific harvesting on population dynamics. Journal of Animal Ecology 78: 1076-1085.
Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylidès, Li-Beisson Y & Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: Characterisation, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnology 11: 7.
DOI: none
Turmel M, Cote V, Otis C, Mercier J, Gray MW, Lonergan KM & Lemieux C (1995) Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion). Molecular Biology and Evolution 12: 533-545.
DOI: none
Birungi ZS & Chirwa EMN (2014) The kinetics of uptake and recovery of lanthanum using freshwater algae as biosorbents: Comparative analysis. Bioresource Technology 160: 43-51.
Esperanza M, Cid A, Herrero C & Rioboo C (2015) Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: Screening cytotoxicity and genotoxicity endpoints. Aquatic Toxicology 165: 210-221.
Esperanza M, Seoane M, Rioboo C, Herrero C & Cid A (2015) Chlamydomonas reinhardtii cells adjust the metabolism to maintain viability in response to atrazine stress. Aquatic Toxicology 165: 64-72.
Fernéndez-Naveira A, Rioboo C, Cid A & Herrero C (2016) Atrazine induced changes in elemental and biochemical composition and nitrate reductase activity in Chlamydomonas reinhardtii. European Journal of Phycology 51: 338-345.
Esperanza M, Seoane M, Rioboo C, Herrero C & Cid A (2016) Early alterations on photosynthesis-related parameters in Chlamydomonas reinhardtii cells exposed to atrazine: A multiple approach study. Science of the Total Environment 554-555: 237-245.
Lachmann SC, Maberly SC & Spijkerman E (2016) Ecophysiology matters: Linking inorganic carbon acquisition to ecological preference in four species of microalgae (Chlorophyceae). Journal of Phycology 52: 1051-1063.
Martín-Betancor K, Aguado S, Rodea-Palomares I, Tamayo-Belda M, Leganés F, Rosal R & Fernández-Pinas F (2017) Co, Zn and Ag-MOFs evaluation as biocidal materials towards photosynthetic organisms. Science of the Total Environment 595: 547-555.
González-Pleiter M, Rioboo C, Reguera M, Abreu I, Leganés F, Cid A & Fernández-Pinas F (2017) Calcium mediates the cellular response of Chlamydomonas reinhardtii to the emerging aquatic pollutant Triclosan. Aquatic Toxicology 186: 50-66.
Esperanza M, Houde M, Seoane M, Cid A & Rioboo C (2017) Does a short-term exposure to atrazine provoke cellular senescence in Chlamydomonas reinhardtii? Aquatic Toxicology 189: 184-193.
González-Pleiter M, Rioboo C, Reguera M, Abreu I, Leganés F, Cid A & Fernández-Pinas F (2017) Calcium mediates the cellular response of Chlamydomonas reinhardtii to the emerging aquatic pollutant triclosan. Aquatic Toxicology 186: 50-66.
Pröschold T, Darienko T, Krienitz L & Coleman A (2018) Chlamydomonas schloesseri sp. nov. (Chlamydophyceae, Chlorophyta) revealed by morphology, autolysin cross experiments, and multiple gene analyses Phytotaxa 362: 21-38.
Tamil Selvan S, Govindasamy B, Muthusamy S & Ramamurthy D (2019) Exploration of green integrated approach for effluent treatment through mass culture and biofuel production from unicellular alga, Acutodesmus obliquus RDS01 International Journal of Phytoremediation -: -.
Esperanza M, Seoane M, Rioboo C, Herrero C & Cid A (2019) Differential toxicity of the UV-filters BP-3 and BP-4 in Chlamydomonas reinhardtii: A flow cytometric approach Science of the Total Environment 669: 412-420.
Sequences [1 ]
EMBL/Genbank Links
(Bold text = submission by CCAP staff or collaborators)
5.8S-ITS2
Division/Phylum: Chlorophyta Class: Chlorophyceae Order: Chlamydomonadales

Note: for strains where we have DNA barcodes we can be reasonably confident of identity, however for those not yet sequenced we rely on morphology and the original identification, usually made by the depositor. Although CCAP makes every effort to ensure the correct taxonomic identity of strains, we cannot guarantee that a strain is correctly identified at the species, genus or class levels. On this basis users are responsible for confirming the identity of the strain(s) they receive from us on arrival before starting experiments.
For strain taxonomy we generally use AlgaeBase for algae and Adl et al. (2019) for protists.

Culture media, purity and growth conditions:
Medium:EG:JM; Axenic; maintained by serial subculture;
Attributes
AuthorityDangeard 1888
IsolatorSmith (1945)
Collection Sitepotato field Amherst, Massachusetts, USA
Notes Wild type, heterothallic + strain
Area North America
Country USA
Environment Soil
In Scope of Nagoya Protocol No
ABS Note Collected pre Nagoya Protocol. No known Nagoya Protocol restrictions for this strain.
Collection Date c. 1945
Original Designation 137C+
Pathogen Not pathogenic: Hazard Class 1
Strain Maintenance Sheet
Toxin Producer Not Toxic / No Data
Type Culture No
Taxonomy WoRMS ID 608420
Equivalent StrainsSAG 11-32b,UTEX 90

CCAP11/32A

Chlamydomonas reinhardtii


Related Products